CDC-42 Orients Cell Migration during Epithelial Intercalation in the Caenorhabditis elegans Epidermis

نویسندگان

  • Elise Walck-Shannon
  • Bethany Lucas
  • Ian Chin-Sang
  • David Reiner
  • Kraig Kumfer
  • Hunter Cochran
  • William Bothfeld
  • Jeff Hardin
چکیده

Cell intercalation is a highly directed cell rearrangement that is essential for animal morphogenesis. As such, intercalation requires orchestration of cell polarity across the plane of the tissue. CDC-42 is a Rho family GTPase with key functions in cell polarity, yet its role during epithelial intercalation has not been established because its roles early in embryogenesis have historically made it difficult to study. To circumvent these early requirements, in this paper we use tissue-specific and conditional loss-of-function approaches to identify a role for CDC-42 during intercalation of the Caenorhabditis elegans dorsal embryonic epidermis. CDC-42 activity is enriched in the medial tips of intercalating cells, which extend as cells migrate past one another. Moreover, CDC-42 is involved in both the efficient formation and orientation of cell tips during cell rearrangement. Using conditional loss-of-function we also show that the PAR complex functions in tip formation and orientation. Additionally, we find that the sole C. elegans Eph receptor, VAB-1, functions during this process in an Ephrin-independent manner. Using epistasis analysis, we find that vab-1 lies in the same genetic pathway as cdc-42 and is responsible for polarizing CDC-42 activity to the medial tip. Together, these data establish a previously uncharacterized role for polarized CDC-42, in conjunction with PAR-6, PAR-3 and an Eph receptor, during epithelial intercalation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial control of active CDC-42 during collective migration of hypodermal cells in Caenorhabditis elegans.

Collective epithelial cell migration requires the maintenance of cell-cell junctions while enabling the generation of actin-rich protrusions at the leading edge of migrating cells. Ventral enclosure of Caenorhabditis elegans embryos depends on the collective migration of anterior-positioned leading hypodermal cells towards the ventral midline where they form new junctions with their contralater...

متن کامل

The Inositol 1,4,5-Trisphosphate Receptor Regulates Epidermal Cell Migration in Caenorhabditis elegans

Polarized migration and spreading of epithelial sheets is important during many processes in vivo, including embryogenesis and wound healing. However, the signaling pathways that regulate epithelial migrations are poorly understood. To identify molecular components that regulate the spreading of epithelial sheets, we performed a screen for mutations that perturb epidermal cell migration during ...

متن کامل

Integrin α PAT-2/CDC-42 Signaling Is Required for Muscle-Mediated Clearance of Apoptotic Cells in Caenorhabditis elegans

Clearance of apoptotic cells by engulfment plays an important role in the homeostasis and development of multicellular organisms. Despite the fact that the recognition of apoptotic cells by engulfment receptors is critical in inducing the engulfment process, the molecular mechanisms are still poorly understood. Here, we characterize a novel cell corpse engulfment pathway mediated by the integri...

متن کامل

A RAC/CDC-42–Independent GIT/PIX/PAK Signaling Pathway Mediates Cell Migration in C. elegans

P21 activated kinase (PAK), PAK interacting exchange factor (PIX), and G protein coupled receptor kinase interactor (GIT) compose a highly conserved signaling module controlling cell migrations, immune system signaling, and the formation of the mammalian nervous system. Traditionally, this signaling module is thought to facilitate the function of RAC and CDC-42 GTPases by allowing for the recru...

متن کامل

MicroRNAs Protect the Robustness of Distal Tip Cell Migrations from Temperature Changes in Caenorhabditis elegans: A Dissertation

microRNAs play an important role in protecting biological robustness during development. Biological robustness is the ability to maintain a consistent output despite variation in input, such as transcriptional noise or environmental stresses. Here, we show that the conserved microRNAs mir-34 and mir-83 promote the robust migration of the distal tip cells in Caenorhabditis elegans when stressed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016